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ABSTRACT
Efficient data analytics methods are essential to characterise occupation-specific anthropometric 
head shapes for developing well-fitted head-mounted devices. However, classifying and modelling 
3D head shapes for small population groups remains challenging due to limited data and 
systematic approaches. This study proposes a streamlined six-step framework using 3D head 
scans from 36 firefighters (18 males, 18 females). We evaluated K-means and K-medoids clustering 
and four shape modelling methods—NURBS, NURBS least squares (LS), Cubic Spline, and Cubic 
Spline LS—and validated the predicted head shape against NIOSH, ANSUR II, CAESAR, and US 
Army databases. Results showed K-means outperformed K-medoids (28% lower distances). Surface 
mapping-based clustering was 35% more accurate than PCA-based clustering. Cubic Spline LS 
achieved the lowest mean squared error (0.70 cm2) and fastest computation (0.14 s), performing 
better than NURBS LS (7.19 cm2 and 1.87 s). Overall, surface mapping, K-means clustering, and 
Cubic Spline LS methods provided more accurate head shapes for our studypopulation groups.

Practitioner Summary: The proposed surface mapping-based K-means clustering and Cubic Spline 
LS method were efficient in predicting head shapes for specialised occupational groups. These 
techniques can assist practitioners for characterising and establishing occupation-specific 
anthropometric head shapes in order to develop well-fitted head-mounted devices (e.g., helmets, 
virtual reality headsets).

1.  Introduction

Population-specific anthropometric head shape data 
are essential for designing well-fitted head-mounted 
products (e.g., helmets, virtual/augmented reality, 
headgear, headphones, etc.) (Niu and Li 2012; Ma and 
Niu 2021; Zhang et al. 2022b) and for creating 
head-neck finite element models (Bruneau and Cronin 
2020), implants (Sena and Piyasin 2008; Mandolini 
et  al. 2020), and their surgical planning (Dong et  al. 
2010; Rodriguez-Florez et  al. 2017). Traditionally, 
one-dimensional (1D) measurements (e.g., head 
breadth, length, circumference, etc.)—obtained using 
rulers, tape measures, and anthropometers (Wang 
et  al. 2000)—have been widely used to develop head 
anthropometry datasets because of their ease of data 
collection and processing. However, these manual 
measurements can be time-consuming and prone to 
error when untrained personnel or uncalibrated 

equipment are involved. In contrast, the advancement 
in three-dimensional (3D) scanning technologies has 
garnered much attention in the past two decades, as 
3D body scanners can capture intricate geometrical 
variations of human body shapes with high accuracy 
(Boehnen and Flynn 2005), which eventually yielded 
the development of new anthropometric head-shape 
datasets in several countries (Bougourd, Treleaven, and 
Allen 2004; Isaacs 2005; Seidl et  al. 2009).

Although 3D scanners are faster, less labour-intensive, 
and incomparably more accurate and detailed than 
traditional 1D anthropometric measures, they produce 
a vast amount of 3D point clouds with complex geom-
etries, curves, and contours. Furthermore, in compari-
son to 1D-based measures, 3D scan datasets require 
additional data analytics methods and steps for sur-
face alignment, parameterisation, and dimensionality 
reduction before being used for body shape modelling 
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(Ma and Niu 2021). Such data processing steps are pri-
marily attributed to between-subject variations in sit-
ting behaviour, cervical lordotic curvatures, and the 
challenges in maintaining the same reference coordi-
nate system between subjects during the scanning 
process. To mediate these challenges, previous studies 
suggested several techniques to align all acquired 3D 
scan data in the same reference plane or coordinate 
system. Some of these techniques include iterative 
closest point method (Luximon et  al. 2016), the selec-
tion of facial landmark references (Zhuang et  al. 2013), 
and alignment of model anatomical planes with global 
reference planes (Luximon, Ball, et al. 2012; Perret-Ellena 
et  al. 2015; Skals et  al. 2016). Additionally, since 3D 
shapes contain a massive number of dense point 
clouds, some previous studies have implemented prin-
cipal component analysis (PCA), a dimensionality 
reduction technique, to reduce data dimensionality 
and to select major features that are significantly dif-
ferent from each other while protecting the original 
shape. However, no previous studies have tested 
whether the reduced dimension using PCA can repre-
sent complex 3D head shapes that differ significantly 
across subjects. Another alternative solution could be 
the development of a surface mapping method to rep-
resent the 3D complex head shape accurately while 
reducing the high dimensionality of its 3D point 
clouds. In other words, one can implement an effec-
tive surface mapping method that involves 
down-sampling of vast 3D point clouds while preserv-
ing the integrity of essential geometric features. 
Overall, all these intermediate steps collectively make 
the 3D shape-based head modelling more 
method-intensive than 1D-based methods.

The complexity of 3D head shape modelling is fur-
ther compounded by wide variations in head shape 
between subjects, which can be attributed to factors 
such as age, gender, and ethnicity (Zhuang et  al. 2013; 
Zhang et  al. 2022a). As a result, large datasets have 
been utilised to develop various population-specific 
anthropometric head shapes. In those studies, unsu-
pervised machine learning techniques such as 
K-medoid (Lacko et  al. 2017; Verwulgen et  al. 2018; 
Huang et  al. 2023), hierarchical clustering (Skals et  al. 
2016; Ellena et  al. 2017, 2018), and K-means (Niu, Li, 
and Salvendy 2009; Kuo, Wang, and Lu 2020; Seo, Kim, 
and Kim 2020) were commonly used to cluster the 
head shapes. Among them, contradictory results were 
reported in the utility of K-means and K-medoids in 
3D shape clustering. For instance, Lacko et  al. (2017) 
extracted two variations of features—1D measure and 
shape-based measures—from 100 head scans prior to 
implementing K-medoids technique. They found three 

optimal clusters using the shape-based K-medoid 
method to yield the least amount of errors. Huang 
et  al. (2023) also employed the K-medoids method to 
cluster 339 Chinese head scan data, yielding seven 
optimal clusters. Similarly, Niu, Li, and Salvendy (2009) 
employed the K-means algorithm to cluster 378 head 
scans of Chinese military personnel and reported 
obtaining seven distinct clusters. In another interesting 
study, Zhang et  al. (2022c) employed K-means, hierar-
chical, and fuzzy clustering techniques on the principal 
components of the head scan point clouds and 
reported that six clusters yielded by the K-means 
method provided higher accuracy than other cluster-
ing techniques. In summary, there is no consensus on 
the accuracy and utility of K-means and K-medoid 
methods or the number of optimal clusters. The choice 
between them remains occupation- and population- 
specific (Niu, Li, and Salvendy 2009). Besides, techniques 
such as Ray-Turi index (Ray and Turi 1999), silhouette 
coefficient (Rousseeuw 1987), and elbow method 
(Nainggolan et  al. 2019) were developed to determine 
the optimal number of clusters, though these methods 
do not provide any statistical significance when select-
ing the optimal number of clusters.

Data outliers can affect the performance of the 
clustering techniques. Though a large dataset may 
provide sufficient freedom to remove outliers, there 
exists very limited freedom for outlier removal with 
small datasets, as it may introduce data skewness and 
provide inappropriate shapes (Osborne and Overbay 
2004). Although statistical shape modelling (Lacko 
et  al. 2015; Heutinck et  al. 2021; Zhang et  al. 2022b; 
Fu, Luximon, and Luximon 2024; Liu et  al. 2025) can 
mitigate some of these limitations; however, it typi-
cally demands large datasets, which are often infeasi-
ble in small, academic laboratories due to financial 
constraints and logistical burdens, particularly in 
acquiring 3D head scans from specialised occupational 
populations that do not exist locally in large numbers. 
Consequently, researchers need to identify appropriate 
clustering and head shape modelling techniques for 
small datasets to ensure the accuracy of the predicted 
shape and obtain meaningful results. Traditionally, 
researchers have commonly used curve fitting tech-
niques, such as non-uniform rational B-splines (NURBS) 
(Piegl and Tiller 1997), Cubic Splines (Amor et  al. 2006), 
linear regression (Weisberg 2005), and polynomial 
regression (Ostertagová 2012) to fit data points. 
However, for shape modelling and design, Cubic 
Splines and B-splines are the most used methods in 
modelling complex shapes due to their versatility in 
adjusting and modifying the curvature of shapes.  
In most cases, 3D curves and surface fitting begin with 
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parameterising the surface, essentially mapping its 
complex shape onto a simpler 2D space. This step 
plays a key role in making the fitting process more 
manageable. It not only helps achieve a smoother and 
more accurate fit but also improves computational 
efficiency. This step is especially important for meth-
ods like NURBS and cubic splines, which rely on a 
large number of parameters to define surface shape. 
The NURBS method provides local control over the 
shape of the curve through control points, allowing for 
localised modifications without substantially affecting 
the global curve shape. In contrast, the cubic spline 
method is defined by knot points that control the cur-
vature of the shape. However, these knot points of the 
cubic spline do not provide as much flexibility as the 
control points in the NURBS technique in creating cur-
vature, though they are simpler to implement and 
require less computational power. Additionally, 
researchers can choose interpolation or approximation 
functions when implementing NURBS and cubic spline 
methods to a given set of 3D data points (Piegl and 
Tiller 1997). While the interpolation function passes 
exactly through all data points, the approximation 
function does not necessarily pass through all data 
points. Instead, it minimises overall error (least squares 
error) between the function and the data points. In 
summary, for shape editing and customisation (i.e., 
adjustable sizes) using small 3D head scan dataset, a 
combination of NURBS or Cubic Spline method with 
an interpolation or approximation function would 
allow users to develop complex anthropometric head 
shapes in order to designing products that meet indi-
vidual anthropometric needs (Zhang and Molenbroek 
2004; Pal and Ballav 2007; Xie, Li, and Lv 2010; Hadi 
and Alias 2019; Xi, Zongqian, and Qiao 2022).

Although automatically adjustable products offer 
individualised fits, they have drawbacks, including 
being structurally less rigid, being more expensive, 
and requiring longer fabrication time. In contrast, 
products with fixed, variable sizes can become an 
inevitable option to facilitate a better fit, especially in 
the context of occupational products such as helmets. 
Nonetheless, a product developed using a civilian 
anthropometric dataset may not provide effective fit 
for occupation-specific populations, such as firefight-
ers, law enforcement officers, and soldiers, who require 
unique anthropometric characteristics to meet their 
job-specific physical demands (Hsiao, Whisler, and 
Bradtmiller 2023). Additionally, the majority of these 
3D anthropometric databases include 1-D measures 
and are based on civilian populations, like the Civilian 
American and European Surface Anthropometry 
Resource (CAESAR) (Robinette et  al. 2002), National 

Institute of Occupational Safety and Health (Zhuang 
and Bradtmiller 2005), size China (Ball 2011), and 
Taiwanese population (Wang, Wang, and Lin 2002). 
Moreover, these databases were developed decades 
ago and may no longer be adequate for developing 
head-mounted devices for the new generations due to 
changes in their anthropometric characteristics (Malkoc 
et  al. 2014; Molenbroek, Albin, and Vink 2017). Lastly, 
literature shows the lack of digital head shapes that 
can readily be available to develop head-mounted 
devices such as 3D head shapes. These shortfalls indi-
cate a critical need for an updated 3D head shape 
dataset, particularly for designing head protective 
devices used for both civilian and occupational users.

Therefore, this study aimed to determine accurate 
and efficient methods for clustering and modelling 
anthropometric head shapes using a small dataset. We 
conjecture that NURBS and Cubic Spline shape model-
ling techniques, when applied judiciously with appro-
priate clustering techniques, could reduce the effects 
of outliers and improve shape prediction even with a 
small dataset. To our knowledge, no studies have yet 
utilised these shape modelling methods in conjunction 
with K-means and/or K-medoid clustering techniques 
to derive anthropometrically-accurate 3D head shapes. 
In these contexts, this study introduced several meth-
odological innovations: (1) develop a head surface 
mapping method inspired by the 10-20 system guide-
lines for electroencephalography data acquisition, (2) 
employ K-means and K-medoid clustering methods to 
the mapped surface and its reduced dimensional 
space to identify the most accurate clustering tech-
nique for small datasets, (3) propose an ANOVA-based 
strategy for identifying the optimal number of clusters, 
(4) employ both interpolation and approximation 
based NURBS and cubic spline curve fitting techniques 
to generate cluster-specific head shapes, and 5) derive 
3D anthropometric digital head shapes for designing 
head-mounted product designs.

2.  Materials and methods

2.1.  Experiment

2.1.1.  Participants
We initially recruited 36 firefighters, comprising 18 
males and 18 females. However, the 3D scan data from 
seven female participants were excluded due to pre-
processing challenges associated with ponytails and 
uneven hair volume. An additional seven male partici-
pants were recruited to ensure the acquisition of 
high-quality 3D scan data with minimal or no hair 
interference. This adjustment resulted in a final 
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participant cohort of 25 males (age: 37.6 ± 8.28 years; 
weight: 90 ± 17.17 kg; height: 177 ± 7 cm; BMI: 
28.72 ± 4.58) and 11 females (age: 31.28 ± 7.17 years; 
weight: 63.11 ±  
8.27 kg; height: 162 ± 5 cm; BMI: 24.28 ± 3.82). The inclu-
sion criteria required all participants to be free from 
musculoskeletal, degenerative, or neurological disor-
ders. Eligible participants were provided with detailed 
information about the study and were required to 
read and sign a consent form approved by the local 
Institutional Review Board (IRB No. 2020-708).

2.1.2.  Data acquisition
A laser-based handheld 3D scanner (EinScan HX, 
Shining 3D, Hangzhou, China), equipped with two 
cameras, achieved an accuracy of 0.04 mm and a scan-
ning speed of 50 fps, was used to scan participants’ 
head and neck complex (from the T4 vertebral level to 
the tip of the head) in a controlled laboratory environ-
ment. To minimise interference from hair volume, all 
participants were asked to wear a swimming cap; 
female participants were specifically instructed to 
secure their ponytails beneath the cap. These head 
caps were carefully chosen to fit tightly against the 
scalp, with the purpose of creating indentations that 
reveal the underlying skull contour. That means the 
acquired scan data should accurately represent the 
true geometric contour of the 3D head shape, which 
can be used in the ergonomic design of head-mounted 
devices, such as helmets.

Additionally, participants were asked to maintain an 
upright seated posture with their eyes closed during 
the scanning process to ensure consistent and accu-
rate data acquisition. To avoid any disruption to the 
laser scan, participants were instructed to remove 
metallic or reflective materials, such as jewellery. The 
scanning protocol was part of a larger project that 
involved three different scan conditions: no helmet, 
European-style helmet, and traditional US-style helmet. 
Each scanning session took approximately five min-
utes, resulting in a total scanning duration of 15 min-
utes per participant. However, for the purposes of 
anthropometric analysis, only the scans obtained with-
out helmets were utilised.

2.2.  Methodological framework for 3D head shape 
modelling

In order to sample and model 3D head scan data from 
a relatively small participant pool, we propose a meth-
odological framework (Figure 1) consisting of six major 
steps: 1) data pre-processing, 2) surface mapping, 3) 
feature selection, 4) clustering, 5) shape modelling and 

prediction, and 6) shape validation. In the subsequent 
sections, we demonstrate the intricate details of 
these steps.

Our data pre-processing steps included 1) noise, 
artefacts, and unwanted body feature removal, 2) 3D 
surface alignment, 3) data smoothing, and 4) head 
region of interest (ROI) selection. As raw 3D scan data 
contains noises and unwanted surface details (outli-
ers), we used EXScan HX-V1.3.0.3 (Shining 3D, 
Hangzhou, China) software platform to remove noises, 
unwanted body segments (shoulder, upper back, and 
sternum regions) and other artefacts, such as clothes 
from the 3D raw scan data (Figure 1). As no consistent 
reference axis was maintained during the 3D scanning 
process across the subjects, all scan data must be 
aligned on a consistent axis for downstream process-
ing. We used the digital NIOSH large head form as a 
baseline head shape (NIOSH 2020) and nine anthropo-
metric landmarks (tip of the nose, right eye, left eye, 
mid-mouth, glabella, right ear opening, left ear open-
ing, right nostril, and left nostril) to align 3D head 
shapes of all subjects to a reference axis (NIOSH). We 
used Geomagic Essentials software (Shining 3D, 
Hangzhou, China) to perform an automatic global reg-
istration process. By considering the nine landmarks as 
constraints, we aligned all scanned head shapes with 
the baseline reference head shape. We utilised an 
in-built smoothing function in Geomagic to smooth 
the 3D shape data and then cropped out unwanted 
neck, face, and skull segments to create the 3D head 
skull/scalp region of interest (ROI) for head shape clus-
tering and modelling. The ROI was selected by inter-
secting three planes: a transverse plane passing 
through the glabella height, a sagittal plane passing 
through the tragion, and another transverse plane 
passing through the C1 height. The ROI comprised the 
upper region area resulting from the overlapping 
zones formed by the intersection of these planes 
(Figure 1).

2.2.1.  Surface mapping
In this study, the proposed surface mapping process 
consisted of down-sampling the vast amount of 3D 
data points while preserving the essential geometric 
features of the head. Briefly, each shape (the ROI) was 
first aligned to three reference planes: mid-sagittal 
plane, mid-frontal plane, and Frankfurt plane passing 
through glabella and inion landmarks. Since each shape 
contained a vast amount of 3D point clouds (over 1 
million data points), we applied a unique data reduc-
tion technique to streamline the process of clustering 
and modelling. Specifically, we created 18 equally 
spaced head curves along the anterior-posterior (A-P) 
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direction for each individual head shape (Figure 1). 
These curves were generated by first defining the 
Frankfurt plane and then rotating it around an axis 
passing through the glabella and occiput landmarks. 
The rotation was performed in 10° increments, starting 
from the left tragion (0°) and ending at the right tra-
gion (180°). Along each of the 18 curves, we extracted 
20 equally spaced points in the A-P direction using 
Geomagic software. This surface mapping process was 
inspired by the International 10-20 system guideline for 

electroencephalography electrode placement (Jasper 
1958). Our first set of clustering features consisted of a 
total of 360 surface points (18 curves × 20 equally 
spaced points per curve) for each individual subject.

2.2.2.  Dimensionality reduction
To identify the most significant features and enhance 
clustering accuracy (Luximon, Zhang, et  al. 2012), the 
PCA technique was applied to the magnitudes 

Figure 1. M ethodological framework implemented in this study: 1) data pre-processing, 2) surface mapping, 3) feature selection, 
4) clustering, 5) shape modelling and prediction, and 6) shape validation. Clustering methods were employed to both mapped 
surface and the principal components. Four shape modelling methods are non-uniform rational B-splines (NURBS), NURBS least 
squares (LS) approximation, Cubic Spline and Cubic Spline LS. Four anthropometric databases for validating the predicted shapes 
are NIOSH, ANSUR II, CAESAR, and US Army databases.
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(Euclidean norms) of the 360 surface points of the 
mapped surface across all subjects. The number of 
principal components (PCs) retained was determined 
based on the scree plot and a threshold of 90% cumu-
lative variance, ensuring the inclusion of the most rel-
evant data while minimising dimensionality. We 
generated the second set of clustering features com-
prising the most important PCs.

2.2.3.  Clustering
We employed two unsupervised machine learning 
algorithms—K-means (MacQueen and 1967) and 
K-medoids (Kaufman and Rousseeuw 2009)—cluster-
ing methods on both sets of clustering features: 1) 
the set of extracted PCs and 2) the set of Euclidean 
norms of the 360 surface points. The four clustering 
methods tested in this study include PCA feature-based 
K-means, PCA feature-based K-medoids, surface 
mapping-based K-means, and surface mapping-based 
K-medoids. To identify the optimal number of clus-
ters, the clustering process was repeated multiple 
times, varying the number of clusters each time. For 
each additional cluster, the distance between each 
point and their respective cluster centroid was 
calculated:

	 D X ctr
i n i n,
= − 	 (1)

In Eq. 1, X
i
 represents the ith data point, ctr

cl
 is the 

centroid of the nth cluster, and D
i n,

 is the distance of 
the ith datapoint to its respective cluster, n. This itera-
tive process ensured that the clustering structure 
reflected meaningful variations in the dataset. To 

validate the selection of the optimal number of clus-
ters, an analysis of variance (ANOVA) test was con-
ducted to assess whether adding an additional cluster 
resulted in significant differences in distance values 
compared to the previous cluster configuration (Figure 
2). All statistical tests were conducted at a 95% confi-
dence level (α = 0.05).

The accuracy of each cluster and the clustering 
methods were evaluated by calculating the sum of 
squared Euclidean distances between individual sur-
face points and the corresponding centroid of that 
cluster:

	 D x c x c
i k

k

K

i

N

i k

k

2

1 1

2

,( ) = −( )
= =
∑∑ 	 (2)

In Eq. 2, K  is the number of clusters, N
k
 is the num-

ber of points in any given cluster k, x
i
 is the ith data 

point, c
k
 is the cluster centroid, and D is the sum 

squared Euclidean distance of each cluster and their 
respective centroid. A lower value of the squared 
Euclidean distance indicates a better cluster and clus-
tering method.

2.2.4.  Modelling and prediction
In order to model the head shapes, we choose NURBS- 
and Cubic Spline-based methods. In this work, we 
implemented the interpolation approach to the sur-
face points of each cluster subject, and then the coef-
ficients of the fitted curves were averaged across all 
subjects within that cluster. The approximation 
approach was applied to the entire surface point data-
set of a cluster without averaging them across sub-
jects. In total, we implemented four modelling 

Figure 2.  Workflow diagram to calculate the optimal number of clusters using ANOVA. The index “i” represents subject number, 
the index “n” represents the total number of clusters and the index “cl”, the cluster number.
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approaches to derive cluster-specific 18 head curves: 
1) NURBS AVG: NURBS with the interpolation function, 
2) NURBS LS: NURBS with the LS approximation 
method, 3) Cubic Spline: the cubic spline method with 
the interpolation function, and 4) Cubic Spline LS: the 
cubic spline method with the least square approxima-
tion method. The head shape was generated by fitting 
all 18 predicted head curves of a cluster using all five 
modelling approaches. The mathematical expression 
and the details of these approaches are dis-
cussed below:

2.2.4.1. NURBS.  The NURBS function predicts 
interpolated points, C u( ), which is a weighted sum of 
control points defined in a parameter space (u) and by 
a basis function (N) (Piegl and Tiller 1997):

	 C u N P

i

n

i p i( ) = ( )
=
∑

1

,
u 	 (3)

In Eq. 3, u is a vector that contains the parameter-
ised representation of the points, P

i
 denotes the ith 

control point, p is the degree of the spline, and n is 
the total number of control points. The control points 
are calculated based on pre-defined points manually 
selected in the interpolation process. The basis func-
tion was computed using the following recursive func-
tion (Piegl and Tiller 1997):

	 N u
u u

u u
N u

u u

u u
N u

i p

i

i p i

i p

i p

i p i

i p, , ,( ) = −
−

( ) +
−

−
(

+
−

+ +

+ + +
+ −1

1

1 1

1 1 ))	(4)

Note that:

	 N u
u u u

otherwise
i

i i

,

,

,
0

1
1

0
( ) =

≤ <



+ 	 (5)

In this approach, we first averaged the 3D surface 
points of each curve (out of 18 curves) for all subjects 
within a cluster and then applied the NURBS method 
to generate a fitted curve.

2.2.4.2. NURBS LS.  In the LS approach, the control 
point was selected by minimising the error—the 
squared of the difference between the approximated 
prediction and the 3D data point:

	 minimize E D C u

k

n

k
= − ( )

=

−

∑
1

1
2

	 (6)

where n represents the total number of 3D points, D
k
 

denotes the kth 3D point in the cartesian space and 
C u( ) is an approximated point across all subjects and is 

expressed differently than the standard NURBS predic-
tion in Eq. 3:
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p
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In Eq. 7, h, p, P
i
, D

1
, and D

n
 denote the number of 

control points, the degree of the spline, the i th control 
point, the first 3D data point, and the last 3D data 
point, respectively. In this work, we selected six control 
points as they were reported to show the best perfor-
mance (i.e., representing the original curvature) in a 
previous study (Harmening and Neuner 2016) that var-
ied the control points between 1 to 12. Using the con-
catenated surface points of all subjects within a cluster, 
we subsequently generated all 18 predicted 
head curves.

2.2.4.3. Cubic spline. The cubic spline is a representation 
of continuous segments of cubic polynomials, which 
are separated by specific points called knots (p). In 
each of these knots, a new polynomial segment, f , 
starts with different coefficients (McKinley and Levine 
1998):
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In Eq. 8, a
j k,

, b
j k,

, c
j k,

, and d
j k,

 are the coefficients 
of kth segment in the j th curve and P

jk
 is the knot 

coordinate of the k th segment in the jth curve, and 
f p
j k, ( ) is the kth polynomial segment of jth curve. Before 

implementing the cubic spline methods, we created 
an independent parameterised variable (t) to transform 
all 3D surface points into 1D data points. The trans-
formed 1D data was then normalised across all sub-
jects within a cluster that ranged between 0 and 1:
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In Eq. 9, v
i
 denotes the ith cartesian 3D data point 

( , , )x y z
i i i

 of a curve c and subject s. For each curve c, 
the variable t

i s

c

,
 is a transformed 1D vector of size 20 1× .  

For each cluster and each curve, all t
i s

c

,
 vectors were 

concatenated across subjects to form a unique vector, 
T. Subsequently, this new parameterised space was 
used to create new 2D space sets—( , )





T x , (


T , 


y), and 
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(




T z, )—corresponding to each one of the original car-
tesian 3D data points (x y z, , ).

We selected a total of six-knot points, similar to 
NURBS’ control points, to fit the cubic models 
(Harmening and Neuner 2016). We first averaged each 
surface point of a curve across all cluster subjects and 
then transformed the 3D data points to a 2D parame-
terised space set c Similar to the NURBS approach, the 
Cubic Spline function was implemented to the six 
selected knot points, representing all 20 surface points 
of a curve, in the new parametrised space in order to 
generate a fitted cubic spline curve.

2.2.4.4. Cubic spline LS.  In the Cubic Spline LS method, 
instead of averaging the 3D surface points across all 
subjects, we transformed their 3D surface points to a 
2D parameterised space, as expressed in Eq. 9 (the 
previous section). Then, we implemented the Cubic 
Spline LS function to fit a curve that minimised the 
distance between the six approximated knot points 
and individual parameterised coordinates—( , )





T x , (


T , 


y), 
and (





T z, ), which are the transformed coordinates of 
the original 3D cartesian data points:

min T

min

f X

a b T P c T P d T P X
a b c d

( ) −
= + −( ) + −( ) + −( ) −

, , ,

2 3 	 (10)

In Eq. 10, P is the knot point selected in a given 
segment in the parameterised space, X  is the value of 
the specific coordinate (x y or z, , ) in the cartesian space, 
and a b c andd, , ,  are the coefficients of the cubic spline 
to be minimised. We subsequently implemented the 
Cubic Spline LS approach to generate 18 predicted 
curves for each cluster. The algorithmic code for this 
approach is provided in Appendice 1.

2.2.5.  Performance measures
Being aware of the dataset’s size and gender imbal-
ance, we implemented various performance metrics, 
such as mean squared error (MSE) and pseudo 
R-squared (R2) to ensure the numerical stability, accu-
racy, and robustness of our methods. The MSE com-
pared model predictions and actual 3D points or head 
measures:

	 MSE
n

y
i

n

i i
= −( )

=
∑1

1

2

yɵ 	 (11)

where n represents the number of data points, y
i
 is 

the subjects’ 3D points, and y
i

ɵ  is the predicted values 
from the models. A total mean squared error was also 
calculated to assess the overall accuracy of the meth-
ods across clusters. Additionally, due to the 

nonlinearity of the predicted curves, numerical stabil-
ity and robustness of the shape modelling methods 
were assessed using pseudo R2 score to explain the 
variability of the predicted shape (Eq. 12).

	 R
SSR

SSE

2
1= −

ln

ln
	 (12)

where SSR is the sum of squares of residuals, and SSE 
is the sum of squared errors. Unlike the traditional R2, 
the pseudo R2 typically yields lower values, ranging 
from 0.2 to 0.4, for a good fit (McFadden 1973). In 
addition, as the methods may achieve similar MSE and 
R2 scores, the run time to perform each method was 
also considered to determine the most effec-
tive method.

The most effective curve fitting and clustering tech-
niques were selected to generate the representative 
head shapes and the descriptive statistics, such as 
mean, standard deviation, minimum and maximum 
values, and the 5th and 95th percentiles of their pri-
mary head anthropometric features—bizygomatic 
breadth (BB), head circumference (HC), and head 
length (HL) in accordance with the definitions speci-
fied in the ANSUR II database (Paquette 2009)—were 
calculated and compared with those from four 
widely-used anthropometric databases: ANSUR II 
(Paquette 2009), CAESAR (Zhuang, Landsittel, et  al. 
2010), NIOSH (Zhuang and Bradtmiller 2005), and US 
Army (Gordon 1988; Zhuang and Bradtmiller 2005). 
Additionally, we performed a point-to-point similarity 
analysis between these four predicted head shapes 
and five NIOSH digital head forms—small, short-wide, 
medium, long narrow, and large head shapes (Zhuang, 
Benson, et  al. 2010)—using the 3D deviation analysis 
tool in the Geomagic Essentials platform and then cat-
egorising them as corresponding standard head form 
sizes. These NIOSH digital head forms were generated 
from the Zhuang and Bradtmiller (2005) study of head 
and facial dimensions from 3,997 US respirator users 
(2543 males and 1454 females).

3.  Results

3.1.  Dimensionality reduction and clustering

The scree plot of the PCA analysis revealed that seven 
PCs collectively contributed over 90% of the total data 
variation (Figure 3). Thus, the PCA feature-based 
K-means and K-medoids clustering processes were per-
formed using these seven PCA-reduced dimensions, as 
well as our proposed surface mapping-based represen-
tation of the complex 3D head shape. The surface 
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mapping-based K-means method showed the lowest 
squared Euclidean distance (34.39 ± 15.41), about 17.65, 
24.48, and 53.86% lower than that of surface 
mapping-based K-medoids (41.76 ± 15.23), PCA 
feature-based K-means (45.54 ± 11.37), and PCA 
feature-based K-medoids (74.54 ± 13.09), respectively 
(Figure 4). Furthermore, both surface mapping and the 
PCA-based K-means clustering method performed bet-
ter than surface mapping and PCA-based K-medoids, 
showing about 17.65 and 38.91% smaller squared 
Euclidean distances, respectively. Overall, data cluster-
ing based on the 360 surface points yielded lower 
squared Euclidean distances than the PCA-based data 
clustering method, suggesting that the PCA-based 
reduced dimensions may not accurately represent a 
complex, uneven head shape.

Therefore, we selected the surface mapping-based 
K-means clustering results to proceed with further 
analyses: cluster selection, shape modelling, and shape 
prediction. The ANOVA results (Table 1) for the surface 
mapping-based K-means clustering yielded a total of 
four optimal clusters (F-value = 3.93, p-value = 0.009): 
Cluster 1 with one male and six females (n = 7), Cluster 
2 with only three males (n = 3), Cluster 3 with 13 males 
and three females (n = 16), and Cluster 4 with seven 
males and three females (n = 10). A schematic presen-
tation of four predicted head shapes is provided in 
Figure 5. Shape 1 had the smallest head circumference 
and length, followed by Clusters 3 and 4. On the other 

hand, Cluster 2 had the largest head circumference 
measures, with a clearly larger occipital region com-
pared to other clusters.

3.2.  Shape modeling methods

Among four shape modelling techniques, the lowest 
MSE values were observed for the Cubic Spline LS 
(MSE = 0.70) (Table 2), with an average reduction of 
6.67, 90.26, and 33.82% compared to NURBS (MSE = 
0.75), NURBS LS (MSE = 7.19), and Cubic Spline (MSE = 
2.07) methods, respectively. Likewise, the pseudo-r-
squared values (R2) of the Cubic Spline LS method 
showed the highest R2 value (Table 3), with an R2 of 
about 1.13, 67.08, and 22.83% higher than those of 
the NURBS, NURBS LS, and Cubic Spline methods, 
respectively (Table 2). The average computational time 
for the Cubic Spline LS method (0.14 seconds) was also 
the lowest among all methods (Table 3).

3.3.  Head shape prediction and size identification

As aforementioned, the surface mapping-based 
K-means clustering and the Cubic Spline LS method 
were found to be the most efficient and accurate 
methods for shape clustering and modelling, we uti-
lised them to generate four cluster-specific head 
shapes: Shape 1, Shape 2, Shape 3, and Shape 4 from 
Cluster 1, Cluster 2, Cluster 3, and Cluster 4 datasets, 
respectively. The anthropometric measures of these 

Figure 3. S cree plot of principal component analysis process. 
The X-axis represents the total number of principal compo-
nents (PCs), and the Y-axis indicates the percentage of total 
variance explained by each PC.

Figure 4.  Performance measures of clustering methods. The 
clustering method was performed using K-means and 
K-medoids unsupervised machine learning algorithms on the 
reduced dimensions of the 3D complex, uneven head shape. 
The dimensionality reduction was performed using principal 
component analysis (PCA) and our proposed method on a 
selection of 360 surface points (surface mapping).

Table 1.  ANOVA results (F- and p-values) for determining the 
optimal number of clusters.

F-Value F Critical p-Value

Number of 
clusters

2 1.74 3.95 0.1919
3 2.82 3.07 0.0641
4 3.93 2.6 0.0099
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predicted shapes were compared with their corre-
sponding 5th, 50th, and 95th percentile measurements 
from four prominent anthropometric databases (Table 
4). Additionally, a point-to-point deviation analysis was 
conducted using NIOSH head forms to compare them 
with the representative head forms of the 3D 
shape-based clusters generated using the Cubic Spline 
LS method (Figure 6). Shape 1 presented anthropo-
metric measures that were closely aligned with the 
average (50th percentile) population measures across 
all databases, particularly for HC and HL (Table 4). BB 
ranged from the 18th to 37th percentile, suggesting a 
slightly narrower head width, but overall, Shape 1 was 

shown to represent the average population (50th per-
centile or medium) head shape. The minimal average 
point-to-point deviation (−0.07 cm ≈ 0) from the NIOSH 
Medium head form ensured Shape 1’s representation 
with a medium-sized, average population dataset 
(Figure 6). Shape 2 was consistently aligned with the 
99th percentile across all databases and all measures, 
indicating it represents an extremely large-size individ-
ual. This interpretation was reinforced by the substan-
tial negative deviation (−0.41 cm), even from the NIOSH 
Large head form, suggesting that Shape 2 exceeds 
standard large references and may require a double 
extra-large classification. Shape 3 demonstrated 

Figure 5. S agittal and top views of Clusters 1-4 as determined using surface mappings-based K-means clustering algorithm. Dots 
indicate subjects’ 2D head points, while solid lines indicate the cluster average. The dimensions of head anthropometric features—
bizygomatic breadth (BB), head circumference (HC), and head length (HL) estimated in accordance with the definitions specified 
in the ANSUR II database (Paquette 2009)—are in centimetres.

Table 2. M ean squared error values (cm2) of four shape modelling methods used in this study.
Cluster 1 Cluster 2 Cluster 3 Cluster 4

Average MSE(n = 7) (n = 3) (n = 16) (n = 10)

NURBS 0.54 ± 0.46 1.34 ± 1.12 0.62 ± 0.66 0.51 ± 0.35 0.75
NURBS LS 7.18 ± 2.27 5.28 ± 2.28 8.60 ± 2.25 7.69 ± 2.38 7.19
Cubic spline 1.91 ± 1.05 2.67 ± 1.99 1.92 ± 1.30 1.80 ± 0.59 2.07
Cubic spline LS 0.51 ± 0.40 1.19 ± 0.68 0.60 ± 0.59 0.50 ± 0.39 0.70

Table 3.  Pseudo R2 and computational time (in seconds) results of four shape modelling methods used in this study
Cluster 1 Cluster 2 Cluster 3 Cluster 4

Average Computational time (s)(n = 7) (n = 3) (n = 16) (n = 10)

NURBS 0.316 0.240 0.256 0.253 0.266 ± 0.034 1.54
NURBS LS 0.172 0.179 0.173 0.119 0.161 ± 0.028 1.87
Cubic spline 0.233 0.191 0.203 0.248 0.219 ± 0.026 0.26
Cubic spline LS 0.320 0.244 0.265 0.246 0.269 ± 0.035 0.14
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Table 4. C omparison of head measurements for each cluster across four databases (ANSUR II, CAESAR, NIOSH, and US Army).
BB (cm)

ANSUR II (Paquette 2009)
CAESAR (Zhuang, Landsittel, 

et  al. 2010)
NIOSH (Zhuang and 

Bradtmiller 2005)

US Army (Gordon 1988; 
Zhuang and Bradtmiller 
2005)

5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th

12.80 13.97 15.20 12.97 14.42 15.87 12.93 14.04 15.16 12.78 13.66 14.54

Shape 1 13.41 (28th) 13.41 (18th) 13.41 (24th) 13.41 (37th)
Shape 2 15.93 (99th) 15.93 (99th) 15.93 (99th) 15.93 (99th)
Shape 3 14.49 (69th) 14.49 (52nd) 14.49 (68th) 14.49 (92nd)
Shape 4 14.79 (80th) 14.79 (61st) 14.79 (80th) 14.79 (99th)

HC (cm)

ANSUR II (Paquette 2009)
CAESAR (Zhuang, Landsittel, 

et  al. 2010)
NIOSH (Zhuang and 

Bradtmiller 2005)

US Army (Gordon 1988; 
Zhuang and Bradtmiller 
2005)

5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th

54.00 57.00 60.00 53.36 56.78 60.19 53.96 56.81 59.67 53.29 55.74 58.18

Shape 1 57.08 (51st) 57.08 (54th) 57.08 (54th) 57.08 (74th)
Shape 2 61.47 (99th) 61.47 (99th) 61.47 (99th) 61.47 (99th)
Shape 3 58.89 (78th) 58.89 (77th) 58.89 (83rd) 58.89 (99th)
Shape 4 59.58 (89th) 59.58 (87th) 59.58 (94th) 59.58 (99th)

HL (cm)

ANSUR II (Paquette 2009)
CAESAR (Zhuang, Landsittel, 

et  al. 2010)
NIOSH (Zhuang and 

Bradtmiller 2005)

US Army (Gordon 1988; 
Zhuang and Bradtmiller 

2005)

5th 50th 95th 5th 50th 95th 5th 50th 95th 5th 50th 95th

18.20 19.63 21.00 20.83 22.94 25.05 18.17 19.37 20.58 18.08 19.12 20.16

Shape 1 20.07 (64th) 20.07 (1st) 20.07 (76th) 20.07 (91st)
Shape 2 21.11 (99th) 21.11 (99th) 21.11 (99th) 21.11 (99th)
Shape 3 20.47 (78th) 20.47 (1st) 20.47 (91st) 20.47 (99th)
Shape 4 20.44 (77th) 20.44 (1st) 20.44 (89th) 20.44 (99th)

The values in parentheses indicate the percentile ranking of each cluster’s measurement within each respective database.

Figure 6. S imilarity analyses (point-to-point distance and standard deviation) in Geomagic Essentials platform between predicted 
head shapes and five NIOSH 3D head forms: small, short-wide, medium, long-narrow, and large sizes. Warmer colours, i.e., more 
to the red (>0; positive deviation), indicated regions in our head shapes that were smaller than the corresponding regions of the 
NIOSH head forms, while colder colours, more to the blue (<0; negative deviation), highlighted regions that were larger. A greener 
colour, i.e., more to the centre, referred to regions with perfect matching between the predicted head shapes and the NIOSH head 
form.
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moderate anthropometric dimensions. Its value fell 
between the 52 and 92nd percentiles, depending on 
the measure and database, indicating a larger-than-av-
erage but not extreme (i.e., more than the 92nd per-
centile) head shape. The average point-to-point 
deviation (0.11 cm) from the NIOSH Large form sug-
gests it was generally consistent with a large head 
form. Shape 4 also fell in the upper percentile ranges 
(61st to 99th), particularly for BB and HC, and closely 
matched the 99th percentile in the US Army dataset 
for all dimensions. The overall point-to-point deviation 
(0.06 cm) from the NIOSH Large form was modest, with 
good regional conformity in the occipital and frontal 
zones. However, bluer colour marks in occipital and 
temporal regions suggest that the shape was broader 
in those areas. Consequently, we can classify Shape 4 
as an extra-large head shape. Overall, all four predicted 
head shapes based on our acquired firefighter data 
exhibit distinct anthropometric profiles, with Shape 1 
representing individuals of medium size, Shape 3 rep-
resenting those of large size, Shape 4 representing 
those of extra-large size, and Shape 2 representing 
those of double extra-large size heads.

4.  Discussion

This study aimed to develop representative head 
shapes for firefighters by employing advanced cluster-
ing techniques and shape modelling methods. Results 
showed that our proposed surface mapping (can be 
called a data and dimensionality reduction technique 
too), K-means clustering, and Cubic Spline LS methods 
provided an efficient and accurate methodological 
framework for predicting head shapes based on 3D 
scan data from small populations or specialised occu-
pational groups (Figures 3, 4, Tables 1, 2, 3).

In general, PCA reduces dimensionality by capturing 
linear patterns of data variation (via eigenvectors) and 
may consequently fail to capture the inherent nonlin-
earities and local geometric intricacies of complex 3D 
head shapes (Jolliffe 2002). On the contrary, the explicit 
modelling of 360 spatial coordinates across the entire 
head surface may have preserved the detailed geomet-
ric features and local curvatures of the head while also 
capturing subtle subject-specific morphological varia-
tions in head geometry. Thus, our proposed clustering 
algorithm on the mapped surface, i.e., 360 surface 
points, outperformed the PCA method in characterising 
the complex 3D head scan data. Among clustering 
techniques, K-means outperformed K-medoids, as indi-
cated by its lower squared Euclidean distance compared 
to K-medoids clustering. The K-means approach calcu-
lates cluster centroids by averaging all data points 

within each cluster, thereby making it sensitive to outli-
ers in small datasets. On the other hand, the K-medoids 
approach selects actual data points as cluster centroids, 
making it less effective in capturing data variance in 
small datasets. However, with an increase in the sample 
size, the distribution of the sample mean approaches 
normality, and the centroid aligns more closely with the 
true mean. This characteristic may make K-medoids 
advantageous for large datasets, as it avoids computa-
tionally intensive averaging processes at each iteration 
and reduces processing time (Madhulatha 2011). 
Conversely, for small datasets, K-means can outperform 
K-medoids due to its ability to better capture variations, 
which was evident in this study.

Among shape modelling techniques, the Cubic 
Spline LS method demonstrated superior accuracy (the 
lowest MSE and highest R2 values) and computational 
efficiency (the least processing time) compared to the 
NURBS, NURBS LS, and standard Cubic Spline methods. 
On the contrary, we observed higher MSE and lower 
R2 values for both NURBS methods, which can be 
attributed to the second-order continuity of NURBS 
curves. While this continuity ensures smoother transi-
tions and higher curvature gradients, it introduces 
increased oscillations (Kuželka and Marušák 2014), 
which, in turn, elevates the error during curve fitting. 
Among both NURBS methods, the standard NURBS 
exhibited relatively better MSE and R2 values than the 
NURBS LS method, as averaging the data points in 
standard NURBS reduces variability and mitigates oscil-
lations that typically contribute to higher error values 
in small datasets. Additionally, the flexibility of the 
NURBS methods in customising shape designs comes 
with an increased computational load due to the 
necessity of handling more parameters, such as knots 
and control points (Piegl 1991; Dimas and Briassoulis 
1999). In contrast, Cubic Splines provide a simpler and 
more efficient solution for applications where compu-
tational resources are limited and the need for detailed 
design modification is less critical. They are faster to 
implement and provide satisfactory accuracy, making 
them well-suited for scenarios where speed and com-
putational efficiency are prioritised. Interestingly, the 
standard Cubic Spline applied to the average surface 
points did not perform better than the NURBS method. 
This discrepancy in their performances is likely due to 
the inherently minimal curvature of cubic splines when 
interpolating data points, which leads to less flexibility 
in fitting the data and ultimately results in lower accu-
racy compared to the NURBS approach (Lahtinen 1988; 
Ma and Kruth 1998; mCarlson 2009). Despite the lim-
itations associated with standard Cubic Splines, the 
Cubic Spline LS method outperformed both NURBS 
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methods. This suggests that the Cubic Spline LS uses 
cubic polynomial segments combined with least 
squares optimisation, offering sufficient curve flexibility 
without excessive curvature fluctuations. By incorpo-
rating all data points in the fitting process rather than 
a reduced or average dataset, Cubic Spline LS main-
tains accuracy while effectively mitigating data vari-
ability that originated from various sources, such as 
subject-specific variations in head anthropometry, gen-
der imbalance, etc (Lahtinen 1988).

Comparative analysis of the predicted head shapes 
against established anthropometric databases revealed 
distinctive characteristics among the clusters. In this 
study, the average bizygomatic breadth, head circum-
ference, and head length of firefighters were found to 
be larger than those reported in other studies that col-
lected general population data (Zhuang, Benson, et  al. 
2010; Zhuang, Landsittel, et  al. 2010; Perret-Ellena 
et  al. 2015; Kuo, Wang, and Lu 2020). Notably, our data 
closely aligned with the most recent military personnel 
dataset (ANSUR II (Paquette 2009)), while significant 
deviations were observed when compared to the older 
U.S. military dataset (Gordon 1988) collected three 
decades ago. This discrepancy may reflect generational 
anthropometric changes driven by improved nutrition 
and lifestyle (Goleij, Hafezi, and Ahmadi 2024), under-
scoring the importance of updating anthropometric 
datasets, especially for designing helmets and occupa-
tional gears for physically demanding occupations like 
firefighting, police officers, and military personnels 
(Henderson 2010; Taylor et  al. 2015). Additionally, our 
dataset showed overall larger measurements compared 
to the CAESAR dataset, which comprises American and 
European civilian populations. This finding aligns with 
previous research (Hsiao, Long, and Snyder 2002; Hsiao, 
Weaver, et  al. 2014; Hsiao, Whitestone, et  al. 2014) indi-
cating that the anthropometric characteristics of phys-
ically demanding occupations, such as those of 
firefighters and law enforcement officers, differ from 
those of the general population. For example, firefight-
ers are generally heavier than the average U.S. civilian, 
with an 8–10 kg higher weight on average. Although 
our study did not study the correlation between BMI 
and head anthropometric measures, prior research 
(Henneberg and Ulijaszek 2010) has indicated that a 
higher weight and BMI are directly associated with 
larger head dimensions, such as head circumference. 
These observations highlight the necessity of collect-
ing occupation-specific anthropometric data to design 
head-mounted devices that better fit the unique needs 
of these specialised populations.

Several limitations must be acknowledged in this 
study. First, the anthropometric measures of the 

predicted shapes were manually extracted in the 
Geomagic software, introducing potential measurement 
errors that could impact shape/cluster classification. 
Second, the ear was used as the reference point for 
trimming the head scans. This approach resulted in 
some variability, as certain head scans displayed longer 
occipital regions than others. Such discrepancies could 
affect the accuracy of the 3D shape-based clustering 
method, as they may cause heads to be assigned to 
larger or smaller clusters depending on the size of the 
ears. Fourth, our final participant cohort consisted of 25 
males and 11 females. It is important to highlight that, 
though the firefighter population is predominantly 
comprised of males, a gender-balanced cohort could 
have provided a different cluster or shape distribution. 
Given that the dataset’s small size and gender imbal-
ance could contribute to total data variation, we imple-
mented optimisation-based LS approximation 
techniques into the Cubic Spline and B-spline methods 
to find the best-fit curves/shapes. Additionally, we eval-
uated the performance of our methods using metrics 
like MSE and pseudo-R2 measures in order to ensure 
their accuracy and robustness. Fifth, our primary goal 
was to propose a methodological framework and clus-
tering and shape modelling methods that can be read-
ily implemented on small datasets and in resource-limited 
settings, not to construct a comprehensive database. 
Therefore, future works can focus on implementing our 
proposed framework and methodologies on larger 
datasets with a more balanced representation of male 
and female participants. Sixth, the trimming process 
focused specifically on the region covered by the hel-
met, which included the ear and occipital areas. As a 
result, certain details of the frontal region, such as the 
nose and eyes, were excluded, which may have affected 
the clustering process and the overall representation of 
the head shape. Seventh, although most anthropomet-
ric databases demonstrate head anthropometry and 3D 
head form representation, such as the NIOSH head 
forms, by using 1-D head measures (e.g., bizygomatic 
breadth, head breadth, head circumference, head 
length, tragion-to-top-of-the-head distance, and sagittal 
arc), some previous studies attempted to include addi-
tional facial features in their head anthropometry study. 
Given that this research is part of a broader project 
focused on developing head-mounted helmets, we 
maintained our focus on 3D head modelling using fea-
tures that are primarily relevant to the head scalp and 
skull regions. Finally, this study did not aim primarily to 
replace existing methodologies well-established for 
large civilian databases; rather, its primary objective was 
to determine clustering and shape modelling methods, 
as well as a computational modelling framework, 
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suitable for small datasets, such as those from firefight-
ers, law enforcement officers, and fighter pilots, acquired 
in resource-limited settings. However, it is noteworthy 
to mention that the appropriateness of these methods 
should be studied for large civilian datasets in the future.

In summary, predicting head shapes using a small 
dataset is challenging, as the existence of data outliers 
may adversely impact modelling accuracy. To the best 
of our knowledge, no previous work has focused on 
small datasets. Our results demonstrated that the com-
bination of K-means clustering alongside the Cubic 
Spline LS shape modelling method is effective for han-
dling small sample sizes and provides an accurate solu-
tion for population-specific anthropometric analysis. The 
proposed methodological framework offers a promising 
approach to enhance clustering and shape modelling 
accuracy, particularly in cases where large datasets are 
impractical to collect, making it especially beneficial for 
population-specific anthropometric applications.
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