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An electromyography-based multi-muscle fatigue model to investigate 
operational task performance

Leonardo H. Weia and Suman K. Chowdhuryb 

aIndustrial Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, USA; bIndustrial and Systems Engineering, 
University of Florida, Gainesville, FL, USA 

ABSTRACT 
We developed a multi-muscle fatigue model (MMFM) by incorporating electromyography (EMG)- 
based amplitude and frequency parameters, the fast-to-slow twitch muscle fiber ratio, a time 
multiplier to linearize the cumulative effect of time, and a muscle multiplier to standardize the 
combined effect of the number of muscles being considered. We validated the model by inves
tigating fatigue development patterns of 10 male subjects performing one sustained-till- 
exhaustion static and two repetitive dynamic tasks (low and high task difficulty levels) using 
0.91 kg and 2.72 kg dumbbells. The results indicated that the MMFM was sensitive to fatigue- 
related neuromuscular changes and predicted shoulder joint fatigue accurately.
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Introduction

Muscle fatigue has been defined as the reduction of 
force-generating capacity of the muscular system, usu
ally seen as a failure to maintain or to develop 
expected muscle force or power (Vøllestad 1997). It is 
a complex physiological state of a muscle, primarily 
developed during prolonged voluntary muscle con
tractions through two mechanisms: (1) the accumula
tion of metabolites (e.g. lactic acid) within muscle 
fibers and (2) a reduction in the brain motor drives 
(Enoka and Duchateau 2008). Many previous studies 
have observed a substantial impact of muscle fatigue 
on physical performance (Lyons et al. 2006; Dupuis 
et al. 2022; Tornero-Aguilera et al. 2022), cognitive 
performance (Martin et al. 2020), and cognitive alert
ness (Martin et al. 2020) of human subjects in various 
operational environments. In addition, several studies 
have used muscle fatigue as the biomarker to identify 
the risk of musculoskeletal (MSK) injuries in occupa
tional settings (Anton et al. 2001; Dubowsky et al. 
2008; Nimbarte et al. 2013; Luger et al. 2016; Rashedi 
and Nussbaum 2016), sports (Mueller-Wohlfahrt et al. 
2013; Goes et al. 2020), and daily activities (Shan 
et al. 2013; Legan and Zupan 2022). This is because 
cumulative exposure to fatigue conditions can lead to 
microtrauma (i.e. fatigue-induced failure) within 
muscles, tendons, and ligaments, which causes the 
development of MSK and chronic pain over time 

(Dugan and Frontera 2000; Gallagher and Schall 
2020). As MSK injuries are prevalent across occupa
tional settings (40% of all MSK work-related injuries 
(BLS 2020), sports (76% of all injuries among 567 
athletes; Goes et al. 2020), and daily activities (39.6% 
out of 535 students; Legan and Zupan 2022), an 
accurate assessment of muscle fatigue is essential to 
determine appropriate risk mitigation strategies in 
order to reduce the risk of MSK injury across all 
operational environments.

In previous studies, researchers have mainly used 
the following six assessment methods to quantify 
muscle fatigue: (1) changes in the maximum volun
tary contraction (MVC) (Vøllestad 1997), (2) changes 
in the endurance time (Liu et al. 2018), (3) changes 
in metabolite concentration (Jebelli et al. 2020), (4) 
near-infrared spectroscopy (Scano et al. 2020), (5) 
electromyography (Cifrek et al. 2009), and (6) per
ceived effort rating (Borg 1982). Among these meth
ods, surface electromyography (SEMG) is a preferred 
assessment method due to its high precision, non- 
invasiveness, and unobtrusiveness (Merletti et al. 
2001; Bandpei et al. 2014). Several SEMG signal proc
essing techniques—such as amplitude and frequency 
parameters—were used to understand the onset of 
muscle fatigue state in various operational activities 
(Luttmann et al. 2000; Jebelli and Lee 2019; Liu et al. 
2019). Among them, the most commonly used 
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techniques to understand muscle fatigue include: (1) 
an increase in the time domain parameters, i.e. inte
grated EMG (IEMG), root mean square (RMS) and 
mean absolute value (MAV), and normalized mutual 
information (NMI) (Kawczy�nski et al. 2015) and (2) a 
decrease in the spectral domain parameters, i.e. 
median frequency (MDF) and the mean frequency 
(MPF) (Mathur et al. 2005; Bosch et al. 2007; Calder 
et al. 2008). This is because, during sub-maximal con
tractions, the process of muscle fatigue causes a shift 
in the recruitment of fast (high-twitch), high-fatiguing 
fibers to a large amount of slow (low-twitch), low- 
fatiguing fibers in order to compensate for the exter
nal force requirement. As a result, the EMG signal 
pattern shows an increase in amplitude and a 
decrease in frequency power with the manifestation of 
muscle fatigue. However, there are putative evidence 
for these aforementioned EMG-based fatigue assess
ment methods (Farina and Enoka 2011). For example, 
some isometric studies have found an expected trend 
of increase in amplitude and decrease in frequency 
with the development of fatigue (Bosch et al. 2007; 
Yassierli and Nussbaum 2008; Tucker et al. 2009). In 
contrast, some isometric (Clancy et al. 2008; Åstr€om 
et al. 2009) and dynamic studies found these spectral- 
and amplitude-based fatigue measures to be insensi
tive to muscle fatigue (Sood et al. 2007; Bosch et al. 
2011, 2012). These putative evidences on the efficacy 
of EMG-based measures were mainly due to the fact 
that the fatigue development and progression are 
affected by the task intensity and duration and the 
muscles being involved (Basmaijan and De Luca 
1985).

In an attempt to correctly assess muscle fatigue, 
several previous studies developed empirical and the
oretical models for a better understanding of muscle 
fatigue. The empirical muscle fatigue models were 
validated by either SEMG and/or force data. For 
example, Ma et al. (2009) developed a dynamic 
fatigue model (i.e. a model that, in contrast to static 
models which assume a constant level of muscle 
fatigue, accounts for the dynamic progression of 
fatigue as a continuous process) to predict muscle 
fatigue considering changes in external load and indi
vidual differences. Their formulation had two first- 
order differential equations – one for the fatigue 
development process and the other one for the recov
ery process. The authors validated their model using 
SEMG and force data and proclaimed that the model 
requires further experimental validation for more 
dynamic work scenarios. On the contrary, the theoret
ical muscle fatigue models were based on the 

mathematical representation of the physiological 
muscle process during prolonged muscle contraction 
and were mainly presumed by existing evidence. For 
instance, a dynamic muscle model to describe activa
tion, fatigue, and recovery levels of muscle fibers was 
proposed by Liu et al. (2002). The model described 
the muscle force induced over a given activation- 
fatigue-recovery time frame, relating the input of the 
brain, assumed constant, to the force. Similarly, Frey- 
Law et al. (2012) proposed a biophysical model based 
on the active, fatigued, and resting muscle states to 
describe the optimal parameters of fatigue and recov
ery. This model was later modified due to the over- 
prediction of fatigue during complex conditions by 
Looft et al. (2018), who included a rest recovery par
ameter to represent muscle recovery better. Potvin 
and Fuglevand (2017) also proposed a fatigue model 
based on the fatigue of motor units. They simulated 
motor unit firing rates and isometric forces of a 120- 
motor unit muscle. However, their model is limited 
to isometric muscle contraction scenarios. In addition, 
it does not consider the recovery stage from fatigue; 
this is important because the degree of muscle fatigue 
depends not only on prior muscle activity but also on 
the muscle resting period. Despite the existence of 
aforementioned fatigue models to assess individual 
muscles’ physiological state, a multi-muscle fatigue 
assessment model is essential to evaluate operational 
activities because the performance of a task requires 
the coordinated activations of multiple muscles and 
joint(s). Thus, the fatigue assessment of only one or 
two muscles may not represent a precise fatigue 
estimation of multiple muscle groups involved during 
a particular task performance. Moreover, fatigue 
development and progression of a muscle depends 
not only on its’ own fatigue state and brain motor 
drive but also on the synergistic activation and fatigue 
level of other muscles involved in performing the 
same task (Kouzaki and Shinohara 2006; Szucs et al. 
2009).

To our knowledge, only one previous study pro
posed a multi-muscle fatigue index using EMG-based 
amplitude and frequency parameters to evaluate 
shoulder muscle fatigue (McDonald et al. 2019). They 
considered the summation of all fatigued muscles’ 
scaled amplitude and frequency values. The scaling 
multipliers were calculated based on the maximal cor
relation between their formulation and perceived 
fatigue level. Moreover, the number of muscles contri
buting to the total summation of their fatigue score 
was multiplied as a linearization term to consider the 
effects of muscle state in the overall fatigue. However, 
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each muscle’s anatomical characteristics were not con
sidered in the formulation. As the EMG amplitude 
and spectrum depend on muscle anatomical charac
terizations (e.g. cross-sectional area, muscle fiber 
composition) (Farina and Holobar 2016), a multi- 
muscle fatigue model without the consideration of 
muscle anatomical characterizations may lead to 
imprecise muscle fatigue assessment. For example, 
muscles with a higher percentage of slow twitch fibers 
(type I) have higher fatigue resistance capacity com
pared to muscles with a higher percentage of fast 
twitch fibers (type II) (Scott et al. 2001). 
Consequently, a multi-muscle fatigue model based on 
the muscle fiber characteristics is expected to facilitate 
more accurate measurement of the physiological 
strain of a joint.

Therefore, this study aimed to develop a multi- 
muscle fatigue model based on the SEMG data and 
individual muscles’ anatomical characterization. Our 
developed multi-muscle fatigue index was expected to 
facilitate both fatigue level and fatigue type of individ
ual muscle groups for any given task. To validate the 
multi-muscle fatigue model, sub-maximal static and 
repetitive dynamic exertions of the shoulder joint 
were considered under different muscle loading con
ditions. We hypothesized that physically demanding 
tasks would lead to greater muscle fatigue than phys
ically less-demanding tasks. Thus, a multi-muscle 
fatigue model is expected to facilitate a precise estima
tion of joint fatigue and reduce the risks MSDs.

Materials and methods

Multi-muscle fatigue model development

The mathematical formulation of our proposed multi- 
muscle fatigue model (MMFM) considered the 
instantaneous contributions of all activated and 
fatigued muscles for a given task, the type of fatigue 
(peripheral muscle fatigue versus central fatigue), ana
tomical characteristics (muscle fiber compositions), 
and scaling multipliers to linearize the formulation. 
The EMG-based joint analysis of spectral and ampli
tude (JASA) technique was the basis for identifying 
the type of fatigue and the number of fatigued 
muscles (i.e. muscle state) (Luttmann et al. 1996). 
Several previous studies implemented the JASA tech
nique to explore the insights of muscle state for vari
ous operational activities (Luttmann et al. 2000; Lin 
et al. 2004; Dos Santos et al. 2017; Ding et al. 2020). 
Briefly, the JASA method, as shown in Figure 1, 
describes four possible muscle state scenarios based 
on the shifts in EMG amplitude and frequency values: 

(1) the increase in both EMG amplitude (A) and 
EMG frequency (f ) values indicate an increase in 
muscle force (first quadrant), (2) the decrease in f but 
an increase in A refers to the state of muscle fatigue 
(second quadrant), (3) the decrease of f and A indi
cates the central fatigue, i.e. decrease in muscle force 
due to the decline in brain effort (third quadrant), 
and (4) the increase of f but a decrease in A refers to 
the state of muscle recovery (fourth quadrant), i.e. the 
recovery of brain and muscle from the fatigue state. 
We used this EMG-based JASA method to identify 
the muscle states, the types of fatigue (peripheral 
muscle fatigue and central fatigue) a muscle under
goes, and the total number of fatigued muscles.

Furthermore, muscle co-activation, task duration, 
the amount of fatigue at any given time (time 
dependency), and the proportion of fiber types affect 
the progression of muscle fatigue. For example, the 
higher a task is sustained (task duration), the more 
metabolite substrates accumulate in muscle fibers, 
which, in turn, influence the capability of myosin and 
actin filaments to form cross-bridges (Fitts 2008; 
Debold 2012). If the task is continued without a rest 
period, the fatiguing fibers cannot get enough time to 
recover. That means muscle fatigue can be considered 
cumulative at any given time step (time dependency). 
In addition, the proportion of fast-to-slow twitch 
fibers affects the firing rate (frequency and amplitude) 
of each muscle (Fitts 2006; Bogdanis 2012). Moreover, 

Figure 1. A schematic presentation of the Joint Analysis of 
Spectral and Amplitude (JASA) to understand electromyog
raphy (EMG)-based muscle states and the formulation of 
multi-muscle fatigue model (MMFM). The symbols, �A and �f 
refer to average EMG amplitude and median frequency of 
baseline non-fatigued EMG signals, respectively. Both plus (þ) 
and minus (-) signs, respectively, indicate an increase and a 
decrease in instantaneous EMG amplitude and/or frequency 
values. M1 and M2 are fatigue type multipliers of MMFM, 
respectively, representing physical fatigue and central fatigue 
states of a muscle at a given time step.
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depending on how muscles fatigue over the course of 
task performance, the central nervous system changes 
its muscle co-activation strategy (both patterns and 
combination), i.e. it can target different muscles to 
co-activate in order to optimize energy expenditure 
and/or even to improve task accuracy (Dul et al. 
1984; Missenard et al. 2008).

Therefore, we used the following criteria to develop 
our proposed MMFM for any given fatiguing static 
and/or dynamic tasks: (1) an increase in the SEMG 
amplitude and a decrease in the SEMG frequency is the 
biomarker of peripheral muscle fatigue, (2) a decrease 
in both SEMG amplitude and frequency is the bio
marker of central fatigue, i.e. a decrease in brain effort 
to generate the required force, (3) muscles with a 
higher proportion of type II fibers fatigue faster, (4) 
tasks that engage a higher number of muscles to have 
the ability to sustain longer, i.e. such task have the flexi
bility to engage alternate muscles if a group of muscles 
is fatigued, and (5) muscles that fatigued faster contrib
ute to a faster rate of physiological strain on the joint. 
By combining these five criteria, we developed four 
multipliers for the MMFM formulation: (1) fatigue 
type, (2) fiber composition, (3) fatiguing time, and (4) 
muscle multipliers. Below, we describe the formulation 
of each of these multipliers, and their algorithm steps 
are shown in Figure 2:

Fatigue type multipliers: M1 and M2 are, respectively, 
fatigue type multipliers representing fatigue and central 
fatigue at a particular time step (iÞ (Equation (1)).

M1 ¼ M2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ai − A
� �2

þ Fi − F
� �2

q

(1) 

Both M1 and M2 multipliers were inspired by the 
JASA principles for peripheral and cognitive muscle 
fatigue (Figure 1), where they are estimated by taking 
the Pythagorean distance between the amplitude (Ai) 
and frequency (Fi) at ith time step. F and A represent 
the baseline frequency and amplitude of non-fatiguing 
time steps in the initial time periods. In this study, 
we considered the average of the first three time 
steps.

We used two normalized reference values: R1 ¼
Ai
A 

and R2 ¼
F
Fi 

and the three following decision criteria 
to determine if a muscle undergoes peripheral muscle 
fatigue (M1) or central fatigue (M2), or no fatigue for 
any given time step, i.

� Criterion 1: R1 � 1 and R2 � 1; then M1 is 
considered.

� Criterion 2: R1 � 1 and R2 � 1; then M2 is 
considered.

� Criterion 3: R2 < 1; then M1 ¼ M2 ¼ 0:

Fiber composition multiplier: The relative propor
tion of the muscle fiber types determines the con
tractile force, twitch speed, and susceptibility to 
fatigue of a muscle (Kuo and Clamann 1981). It is 
generally accepted that relatively more force is allo
cated to the slow-twitch muscles than to the fast- 
twitch muscles since slow-twitch muscles are more 
fatigue-resistant (Smith et al. 1977; Walmsley et al. 
1978). We expressed the contractile properties of each 
of the muscles as fj

sj 
(fiber composition multiplier), 

which was the ratio between fast (fj) and slow twitch 
(sj) fibers of a muscle (j).

Fatiguing time multiplier: Muscle fibers undergo 
three processes–activation, fatigue, and rest—during 
repeated or sustained muscle contraction. If a fiber 
group becomes fatigued, the brain recruits other 
muscles (or fiber groups) to compensate for the 
fatigue-induced losses in force generation. Therefore, 

we formulated 
Pi

1
ci

ti 
is a fatiguing time multiplier to 

account for the number of times a muscle experiences 
fatigue (i.e. total fatigue accumulation), where ti is the 
total number of time steps (windows) at ith time step, 
ci is a counter for the number of time steps (win
dows) a muscle experiences peripheral and/or central 
fatigue by ith time steps.

Muscle multiplier: The number of muscles chosen 
by the users depends on many factors, such as task 
type, body location, and available resources. The 
number of muscles that are considered in a study can 
inflate or deflate the MMFM values. Thence, we pro

posed tanh
gi
Nffiffiffiffiffi

N
p

� �

as a muscle multiplier to normal
ize the number of fatigued muscles (gi) at any given 
time step by the total number of muscles (N) being 
considered in a study.

By combining all four multipliers, we formulated 
the following mathematical expression of MMFM:

MMFM ¼ tanh
�

0:01�
XN

j¼1

��

½M1�

fj
sj jj½M2�

fj
sj

�

�

Pi

1
ci

tiffiffiffi
ti
p

�

� tanh
gi
Nffiffiffiffi
N
p

 !!

� 100

(2) 

where i is an index for time step, j is an index for the 
number of muscles, and N is the total number of 
muscles for a given task. The first term in Equation 

(2), M1½ �
fi
si jj M2½ �

fi
si

� �

; indicates the type of fatigue a 
muscle undergoes. The mathematical operator, ‘OR’ 
symbol (jj), was used in the first term to reflect that 
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either central or physical fatigue can occur at any 
given time step. The fast-to-slow twitch fiber ratio 

fj
sj

� �
was used as a power exponent in the first term 

to emphasize the manifestation of fatigue in muscles 
having a greater number of fast-twitch fibers than 
slow-twitch fibers, as they are more vulnerable to 
fatigue-related muscle injuries. The second term, 
Pi

1
ci

tiffiffi
ti
p

 !

; linearized the non-linearity of the first term, 

which is due mainly to the cumulative effect of 
fatigue over time. The second term also standardizes 
the cumulative fatigue assessment across tasks regard
less of their durations. Lastly, we combined the prod
ucts of first and second terms of individual muscles 
across all time steps in order to estimate the overall 
joint fatigue (i.e. the fatiguing performance of all 
muscles) for a given task. Thus, the last term 

tanh
g

Nffiffiffi
N
p

� �� �

; a muscle multiplier was a hyperbolic 

function and its values range between 0 and 1. This 
hyperbolic function was used to further normalize the 
summation of the product of the first and second 
terms regardless of the number of muscles being con
sidered in those two terms. Finally, the tanh term that 
encompasses the entire equation was used to stand
ardize the resultant MMF values within a range of 0 
to 1 or 0� 100%. Figure 2 shows a detailed schematic 
diagram illustrating, step-by-step, the aforementioned 
entire process to calculate the MMF values.

Model validation

Participants
To test the appropriateness of the MMFM, we recruited 
10 healthy male participants (age ¼ 28.50 ± 3.55 years; 

Figure 2. An algorithmic flow chart of the multi-muscle fatigue model (MMFM) formulation and implementation. The algorithm 
steps start with the processed EMG matrix (step 1) and end with the estimation of MMF output values (step 12).
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weight ¼ 74.9 ± 7.76 kg; height ¼ 175.9 ± 3.78 cm) 
to perform fatiguing exertions under both static and 
dynamic conditions. All participants were required to 
be free from any type of musculoskeletal, degenerative, 
or neurological disorders and have no history of neck, 
back, and shoulder injury or notable pain. Participants 
who met the inclusion criteria were asked to read and 
sign a consent form approved by the local Institutional 
Review Board (IRB # 1505685703) before participating 
in the experimental tasks.

Experimental protocol
Each participant performed fatiguing exertions under 
both static and dynamic conditions. Two types of 
dynamic exertion tasks were chosen based on the 
total amount of moment they imposed on the shoul
der joint. The tasks were detailed in our previous 
studies (Chowdhury et al. 2018; Mubarrat and 
Chowdhury 2023). Briefly, in our previous study 
(Chowdhury et al. 2018), we reported a novel shoulder 
strain index, formulated by integrating the normalized 
magnitudes and directions of 3D shoulder joint reac
tion forces—specifically, the destabilizing translational 
forces (inferior-superior and anterior-posterior) and 
the stabilizing compressive force (medial-lateral). The 
resultant force magnitudes and angular displacements 
were normalized against each participant’s maximum 
isometric exertion and a 45� reference, respectively. 
Strain indices for the frontal and transverse planes 
were then computed and summed to yield a total 
strain index ranging from 0 to 100, where higher val
ues indicate greater joint destabilization. To validate 
this model, 30 different shoulder exertion tasks were 
simulated. From these, one high-strenuous and one 
low-strenuous task were selected for this study. The 
high-strenuous task (strain index ¼ 22.29) involved 
repetitive elbow flexion/extension in the mid-sagittal 
plane, from 30% of the thumb-tip reach at elbow 
height to 100% of the thumb-tip reach at mid-upper 
arm height (the mid-point between the elbow and 
shoulder heights). Similarly, the low-strenuous task 
(strain index ¼ 11.16) involved repetitive elbow/flex
ion movements from 30% of the thumb-tip reach at 
tronchanterion height in the mid-sagittal plane to a 
target 45� right of the mid-sagittal plane at 100% of 
thumb-tip reach at the elbow height (Chowdhury 
et al. 2018; Mubarrat and Chowdhury 2023). The total 
duration of the dynamic tasks was set to 1.5 min, with 
a rest period of at least two times the last exertion 
duration between the trials. During dynamic exer
tions, the pace of the repetitive exertions was regu
lated using a metronome, with a duration of 4 s for a 

full repetition (from origin to destination and then 
destination to origin location). We instructed the par
ticipants to maintain this consistent pace throughout 
the experiment. The static exertion involved holding a 
weight with the right arm at shoulder flexion of 90�
till exhaustion with no elbow flexion and shoulder 
abduction. Both static and dynamic exertions were 
performed using two different dumbbells of 0.91 and 
2.72 kg in a custom-made workstation, as shown in 
Figure 3. There were four experimental conditions for 
the dynamic tasks (2 task levels and 2 load levels) and 
two for the static tasks (2 load levels), in which each 
condition was repeated three times. All experimental 
conditions were randomly selected for each 
participant.

A Bagnoli-16 desktop SEMG system (Delsys, Inc., 
Boston, USA) was used to collect the muscle activa
tion data from the shoulder muscles (Figure 3). The 
EMG sensors used for the data acquisition are parallel 
bar single differential surface electrodes with an inter- 
electrode distance of 10 mm, common mode rejection 
ratio of 92 dB, input impedance greater than 1 MX, 
and a sampling rate of 2000 Hz (Figure 3). The EMG 
activity was recorded from eight different shoulder 
muscles: medial deltoid, anterior deltoid, posterior 
deltoid, supraspinatus, infraspinatus, teres major, 
biceps, and triceps. The EMG electrodes were placed 
at the center of the muscle belly in the parallel direc
tion to the muscle fibers in order to ensure optimal 
signal detection. We followed the EMG electrode 
positioning guidelines as mentioned in the previous 
studies: biceps (Cram et al. 1998), triceps (Cram et al. 
1998), infraspinatus (Nussbaum 2001), supraspinatus 
(Cram et al. 1998), anterior deltoid (Pontillo et al. 
2007), posterior deltoid (Pontillo et al. 2007), and 
middle deltoid (Nussbaum 2001). Before the experi
mental tasks, participants were asked to perform two 
consecutive MVCs for each muscle, with a rest period 
of at least 2 minutes between them to reduce the 
effects of fatigue, by following the MVC protocols 
demonstrated in previous studies (Gowan et al. 1987). 
The MVC trials were performed at an isokinetic 
dynamometry (HUMAC NORM, Computer Sports 
Medicine (CSMi), Stoughton, MA) (Figure 3). After 
all MVC trials, participants were permitted to elapse a 
rest period of 10 minutes prior to beginning the static 
and dynamic tasks.

Additionally, participants were asked to rate their 
self-perceived shoulder exertion effort on a 0–10 scale 
using Borg’s CR-10 scale (Borg 1982) at the beginning 
and the end of each dynamic and static task. 
Participants were also guided to provide their ratings 
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as follows: a score of 0 to 1 if they did not experience 
fatigue, indicating very light to no exertion; a score of 
3 to 5 if they felt a light to moderate level of effort, 
suggesting that the task was somewhat challenging but 
still manageable; a score of 6 to 8 if they perceived the 
task as very tiring but can continue with some struggle; 
and 9 to 10 if they felt unable to continue at that level 

of intensity. Only a Borg score of 1 or less would allow 
them to perform the next trial.

Data analysis
The filtered signals were full-wave rectified and 
smoothed using an eight-order Butterworth band-pass 
filter (10–500 Hz). The SEMG signals of each muscle 

Figure 3. A schematic representation of the experimental task protocol: (a) vertical task heights, (b) task planes and location of the task 
origin and destination, (c) horizontal location of task origin (30% of thumb-tip reach) which locates close to the body and task destination 
(100% of thumb-tip reach, (d) actual human subject testing to display the electromyography (EMG) electrode locations in shoulder muscles 
along with the experimental apparatus, (e) a high-strenuous dynamic task performance to indicate how the subject performed the task, 
(f) the biodynamic apparatus to simulate maximum voluntary contraction trials, and (g) EMG apparatus to acquire muscle activity.
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were normalized with respect to the peak of their cor
responding MVC signal to minimize between-subject 
or between-muscle errors. The IEMG was calculated 
for the muscle contraction duration (si) and the mean 
absolute value for each muscle was calculated using 
Equation (3):

MAVj ¼
IEMGjðnÞ

sjðnÞ
� 100 (3) 

where MAVj; sj; and IEMGi are respectively mean 
absolute value of muscle j at nth exertion, contraction 
duration for the jth muscle at nth exertion, and the 
integrated EMG for jth muscle at nth exertion.

During repetitive dynamic exertions, a period of 
muscle contraction is characteristically followed by a 
period of muscle relaxation when the muscle is 
returned to its original resting position. The total dur
ation of each muscle contraction was about 4 s 
throughout any given task. Therefore, a 4-s long 
muscle contraction period (si) was chosen for all trials 
and all subjects (Figure 4). To calculate the MMF 
value of a repetitive exertion, we slid a 500 ms (with 
overlapping of 250 ms window) moving window 
throughout the 4-s contraction frame and calculated 
MF and MAV for each moving window (Figure 4), 
which were subsequently used as inputs to the JASA 
decision criteria (Figure 1). M1 and M2 fatigue com
ponents were estimated if any instantaneous MAV 
and MF of a 500-ms window exceeded baseline non- 
fatigued amplitude (A) and frequency (f ) values. 
These baseline values for dynamic and static exertion 
signals were calculated by averaging MAV and MF 
values of the first three repetitions of dynamic exer
tion signals and first three window sizes of static exer
tion signals, respectively.

Then M1 and M2 component of each muscle was 
powered to their fast-to-slow twitch fiber ratio 
(Table 1) in order to incorporate the time-variant 
muscle fiber dynamics as per the muscle size principle 
(Fling et al. 2009). Then, the MMF value of repetitive 
exertion was estimated by averaging the MMF values 
of all 16 windows of a contraction frame. Similarly, 
SEMG signals of static trials were rectified and 
smoothed, and the MMF values were estimated for 
each 500 ms (with an overlapping of 250 ms window) 
moving window of the complete trial (Figure 4). In 
addition, MMF values were calculated for all three 
repetitions of six experimental task conditions. 
Moreover, individual subjects’ perceived effort ratings 
(Borg scale) were averaged for each experimental con
dition in order to correlate and validate their corre
sponding objective fatigue (MMFM) values.

Statistical analysis
The descriptive statistics (mean and standard error) of 
MMF values for all repetitive exertions of an experi
mental condition were calculated by averaging them 
across all repetitions and all subjects. In order to valid
ate our MMFM, we investigated linear trends (slopes) 
of MMF values over time for all six experimental con
ditions. In addition, we investigated physical (M1), 
central (M2), or no-fatigue muscle states for the effects 
of task difficulty level (low vs. high) on dynamic exer
tion tasks and load conditions (0.91 kg vs. 2.72 kg) on 
both static and dynamic exertion tasks by using one- 
way analysis of variance test with 95% confidence 
level. The dependent variable was the percentage 
of fatigue contribution ð number of fatigue instances

number of total time instances nð ÞÞ

Figure 4. A schematic presentation of the electromyography 
(EMG) data processing workflow for static and dynamic exer
tion signals. Red boxes in dynamic signals represent the con
traction frame of individual repetitive exertions. A moving 
window of 500 ms with a 250 ms overlapping window (both 
are green color-coded) was slid in each dynamic contraction 
frame, resulting in 16 different moving windows (shown as 
solid red dots). Similar moving windows were also used for 
static exertion signals. R1 and R2 are the decision criteria to 
determine the physical (M1) and central (M2) fatigue compo
nents of individual muscles for the MMF estimation.
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and the independent variable was fatigue type (M1, 
M2, and no-fatigue conditions). A post hoc Tukey’s 
statistical analysis was also employed if the levels of 
each experimental condition had significantly contrib
uted to M1, M2, and no-fatigue muscle states. 
Furthermore, we investigated M1, M2, and no-fatigue 
states of individual muscles and their contributions to 
the total MMF values. The MMFM was also validated 
by investigating linear trend (slope) and Pearson cor
relation coefficient between subjective (Borg’s per
ceived rating) and objective (MMF values) fatigue 
values for each experimental condition.

Results

MMF trends

The MMF values of 2.72-kg and 0.91-kg static exer
tions were notably higher than those of 2.72-kg and 
0.91-kg dynamic exertions across all time steps 
(Figure 5). The 2.72-kg static exertion displayed the 
steepest slope trend (m¼ 3.85) and the highest peak 
MMF value of 85.5 among all trials (task difficulty 
level). Both peak and slope values of 2.72-kg static 

exertion were about 13.1% and 8.1% greater than 
those of the 0.91-kg static exertion (m¼ 3.57; peak ¼
75.57), respectively. Both peak and slope values of 
0.91-kg and 2.72-kg dynamic exertions showed 
smaller peak and slope values than their static coun
terparts. For instance, the peak and slope values of 
2.72-kg-high dynamic exertions (m¼ 3.30; peak ¼
50.83) were respectively 40.53% and 14.29% lesser 
than those of 2.72-kg static exertions (m¼ 3.85; peak 
¼ 85.47), whereas, the peak and slope values of 0.91- 
kg-high dynamic exertions (m¼ 1.13; peak ¼ 46.14) 
were respectively 38.94% and 68.35% lesser compared 
to those of 0.91-kg static exertions. Likewise, 0.91-kg- 
low (m¼−0.45; peak ¼ 25.01) and 2.72-kg-low 
(m¼ 1.20; peak ¼ 46.14) dynamic exertions displayed 
66.9% and 46.0% lower peak values and 112.6% and 
68.8% lower slope values compared to those of 0.91- 
kg and 2.72-kg static exertions, respectively. The peak 
values across all task difficulty levels occurred at the 
last timestep (100% of total time) (Figure 5).

The muscle state data retrieved from the MMFM 
showed that the quantity of physical fatigue (M1) was 
significantly (p value <0.01) higher than the central 
fatigue (M2) across all task difficulty levels for most 

Table 1. Fiber type compositions in the shoulder muscles (Karlsson 1992).
Muscles Short twitch fiber (type I) Fast twitch fiber (type II) Ratio of fast-to-slow twitch fibers

Infraspinatus 0.45 0.55 1.22
Teres major 0.48 0.52 1.08
Supraspinatus 0.59 0.41 0.69
Medial deltoid 0.60 0.40 0.67
Anterior deltoid 0.60 0.40 0.67
Posterior deltoid 0.60 0.40 0.67
Medial biceps 0.42 0.58 1.38
Medial triceps 0.34 0.66 1.94

Figure 5. The MMFM trends for each of the six experimental conditions: two different load conditions (0.91 and 2.72 kg) and 
three task difficulty levels (low and high dynamic and static exertions). Solid lines represent overall fatigue trends, whereas shaded 
regions indicate corresponding standard errors for each of the experimental conditions.
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task duration (62.8% of total), except for the 0.91-kg- 
low dynamic exertion, where M1 was insignificantly 
(p value >0.24) greater than M2 (Figure 6). The 2.72- 
kg static exertion displayed the greatest proportion of 
M1 (�65% of 1024) and M2 (�25% of 1024) states 
and the least proportion of no-fatigue (�10%) state, 
followed by 2.72-kg-high dynamic, 0.91-kg-static, 
2.72-kg-low dynamic, 0.91-kg-high dynamic, and 
0.91-kg-low dynamic exertion tasks. In contrast, low 
dynamic exertion tasks exhibited no-fatigue muscle 
state for significantly (0.91 kg: p value <0.0001, 
2.72 kg: p value < 0.0001) a higher proportion of task 
duration (46% of total) compared to M1 and M2 
states. Likewise, we compared the individual muscle 
state data (as shown in Figure 7) in order to under
stand their contributions to total joint fatigue (MMF 
values). We observed that triceps, middle, anterior, 
and posterior deltoid muscle groups, rotator cuff 
muscle groups (supraspinatus, teres major, and infra
spinatus muscles) experienced a higher proportion of 
M1 state for most of the task duration compared to 
M2 and no-fatigue states for both static exertion tasks 
(Figure 7). They contributed a higher percentage of 
M1 state, followed by M2 state, to MMF values 
(MMFM data), particularly at 75−100% of the task 
duration. Interestingly, the anterior deltoid and teres 
major muscles showed a greater proportion of M2 
fatigue state than M1 and no-fatigue state for 0.91-kg 

static exertion tasks. During low dynamic exertion 
tasks (for both 0.91 kg and 2.72 kg load conditions), 
anterior deltoid, infraspinatus, and triceps muscles 
primarily contributed to M1 and M2 fatigue states, 
specifically, at 50−100% of the task duration (Figure 
7), whereas the rest of the muscles showed a predom
inant amount of no-fatigue state throughout entire 
task duration (Figure 7).

Subjective fatigue and MMF values

The MMF values for each task difficulty level were 
compared with their respective Borg’s perceived exer
tion rating data (subjective fatigue), and their rela
tionship for individual load conditions and position 
(low vs. high exertion) is respectively presented in 
Figures 8 and 9. Figure 8 displayed an increasing 
trend for both 0.91-kg (m¼ 2.53) and 2.72-kg 
(m¼ 0.95) dynamic tasks, respectively. Yet, the major
ity of the participants perceived no-to-low amount of 
effort (0–4; with a mean and standard deviation of 
1.75 ± 1.08) for dynamic tasks using 0.91-kg load con
dition, whereas they perceived a greater amount of 
medium-to-high effort (4–8; with a mean and stand
ard deviation of 4.33 ± 2.23) for dynamic tasks using 
2.72 kg load condition. Similarly, Figure 9 exhibited a 
downward (negative) slope (m¼−2.38) for low 
dynamic exertion tasks, whereas a greater amount of 

Figure 6. Task assessment based on the proportion of physical fatigue (M1), central fatigue (M2), and no-fatigue states for all 
muscles (joint) retrieved from the multi-muscle fatigue model data. Symbols A, B, and C represent post hoc differences between 
the levels of each experimental condition. A different letter between the levels indicates a statistically significant difference.
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upward (positive) trend (m¼ 1.50) was observed for 
high dynamic exertion tasks, indicating that subjects 
perceived a low sense of effort (1–4; with a mean and 
standard deviation of 2.3 ± 1.60) for low dynamic 
exertions and a medium-to-high sense of effort (3–8; 
with a mean and standard deviation of 3.78 ± 2.40) 
for high dynamic exertions. In addition, the perceived 
exertion data for 0.91 kg and 2.72 kg static tasks were 
found to be in the range of an effort level between 4– 

7 (with a mean and standard deviation of 6.1 ± 1.2) 
and 7–10 (with a mean and standard deviation of 
8.6 ± 2.3), respectively. In the original Borg’s scale, a 
subjective perceived rating of 4 was classified as a 
moderate level of effort (Borg 1982). Furthermore, 
previous studies also reported that a Borg’s rating of 
4 and greater was found to be associated with high 
muscle activity (Jakobsen et al. 2014; Williams 2017). 
Therefore, we identified a score of 4 as a threshold to 

Figure 7. Proportions of physical fatigue (M1), central fatigue (M2), and no-fatigue states for the individual muscles and their con
tributions to the overall MMF values (last row) for each load condition and task difficulty levels over time. Blue, green, and white- 
coded regions represent M1, M2, and no-fatigue states, respectively.

Figure 8. Relationship between Borg’s perceived rating (X-axis) and MMF value (Y-axis) for 0.91 and 2.72 kg load conditions dur
ing dynamic tasks (averaged across all task difficulty levels).
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indicate high muscle demand and the increased likeli
hood of muscle fatigue. All four regression equations 
(Figures 8 and 9) showed an average MMF value of 
0.3 (¼ 30%) for a Borg’s perceived rating of 4. The 
results of this study suggest an MMF value of 30% as 
the threshold for the potential risk of developing 
MSDs.

Discussion

In this study, we developed a mathematical formula
tion of MMFM and validated the formulation via a 
laboratory-based human subject experiment, in which 
participants performed fatiguing static and dynamic 
shoulder exertions using two load conditions −0.91 
and 2.72 kg. Using the SEMG data collected from 
eight shoulder muscles, MMF values of the shoulder 
joint were calculated and validated against Borg’s per
ceived exertion data (subjective fatigue) for each 
experimental condition. Results exhibited higher 
objective (MMF values) and subjective (perceived 
exertion scores) fatigue values with the increase in the 
load and task difficulty levels. Moreover, static exer
tion tasks resulted in higher fatigue (both objective 
and subjective) than dynamic exertion tasks.

Our MMFM displayed considerably higher joint 
fatigue (MMF values) for static exertion tasks com
pared to dynamic exertion tasks for both load condi
tions, suggesting that static tasks are comparatively 
more intense and demanding. This can be explained 
by the steady-state muscle contraction (with no rest 
periods) characteristics, which make blood vessels of 
contracted muscles remain partially restricted and 
inhibit the oxygen supply and the removal of lactic 
acid (Enoka 1995; Chen and Lee 1998; Korshøj et al. 
2016; Luger et al. 2016). In contrast, during dynamic 
exertions, muscles undergo relaxation periods between 
contractions and intermittently let blood vessels carry 
oxygen and remove lactic acid from the muscles. 

Consequently, muscles showed significantly a greater 
amount of physical (muscle) fatigue (M1) than central 
fatigue (M2) and no-fatigue states during static exer
tion tasks than dynamic exertion tasks.

The unique characteristics of our multi-muscle 
fatigue (i.e. joint fatigue) formulation were that it 
considered both central fatigue (M2) and peripheral 
muscle fatigue (M1) of individual muscles of a joint. 
Such EMG-based fatigue formulation could open the 
door to understanding the time- and muscle-specific 
onsets of muscle and central fatigue experienced by 
the individual muscles during operational task per
formance. Our results showed that physical fatigue 
(M1) was found to be higher with the increase in task 
difficulty level (from 0.91 kg to 2.72 kg load and low 
to high dynamic task conditions), indicating that a 
higher amount of muscle fibers were engaged to com
pensate the increased metabolic energy requirement 
due to the increased force (load effect) and moment- 
arm (task difficulty effect) demands on the shoulder 
joint. On the contrary, the increase in central fatigue 
(M2) proportion was primarily found in the third and 
fourth quarters of the task duration, suggesting the 
decrease in central effort due to the cumulative mani
festation of peripheral muscle fatigue in the second 
quarter. The static exertion tasks showed this time- 
and task-dependent dynamics of M1 and M2 fatigue 
manifestations more prominently. These findings, 
based on our MMFM formulation, assured the force- 
fatigability relationship, in which a greater weight/ 
force exertion triggers faster and higher fatigue levels 
(Lind and Petrofsky 1979; Bellemare and Grassino 
1982; Bigland-Ritchie and Woods 1984; Clark and 
Carter 1985).

The subjective fatigue data also showed that the 
perceived effort level increased with the increase in 
load and task difficulty levels. The perceived effort 
data for tasks using 0.91 kg load condition and 
low exertion level displayed a nominal relationship 

Figure 9. Relationship between Borg’s perceived rating (X-axis) and MMF values (Y-axis) for high and low dynamic exertion tasks 
(averaged across all load conditions).
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(no-to-low amount of effort) with their corresponding 
objective fatigue data (MMF values). In contrast, the 
perceived effort data for tasks using the 2.72 kg load 
condition and high exertion level exhibited an 
increasing trend and relationship (medium-to-high 
amount of effort) with their corresponding objective 
fatigue data (MMF values). Our findings agreed with 
the findings of some previous studies, in which they 
evaluated the effect of exercise-induced task difficulty 
on their mental/cognitive loading and found that with 
the increase in exercise difficulty, participants experi
enced a higher level of cognitive demand (Cian et al. 
2001). In general, lifting a heavier load involves a 
greater amount of muscle fiber recruitment, especially 
those from larger motor units (i.e. fast-twitch fibers) 
compared to lifting a lighter load. Moreover, a greater 
force demand can also lead to a greater sense of effort 
from the brain, as more muscle fibers are engaged to 
support the load. The progression of such tasks can 
result in more strain on the brain to coordinate and 
sustain more muscle contractions necessary to lift the 
load, thereby leading to an increased amount of 
muscle and brain fatigue (Proske and Allen 2019; 
Xing et al. 2020). In summary, Borg’s perceived rating 
data validated MMFM’s capability of characterizing 
and predicting muscle and central fatigue levels pre
cisely for various operational tasks.

Previous EMG-based fatigue models primarily used 
amplitude and/or frequency parameters to identify 
fatigue (Mathur et al. 2005; Bosch et al. 2007; Calder 
et al. 2008), with no consideration of the dynamics of 
brain effort (Ma et al. 2009) and the time-dependent 
manifestation of muscle fatigue (McDonald et al. 
2019), though central fatigue has been found to affect 
the voluntary drive of muscles (Contessa et al. 2016). 
Furthermore, the longer a muscle contracts, the more 
fatigue accumulates in muscles (Hogan et al. 1998; 
Enoka and Duchateau 2008). On the other hand, our 
MMFM formulation accounted for both time and 
brain effects on individual muscles. Nevertheless, our 
MMF formulation employed time and muscle multi
pliers to linearize the cumulative summation of phys
ical and central fatigue components over time and the 
number of muscles being considered for a given task. 
The muscle multiplier standardized the fatigue contri
butions regardless of the number of muscles that 
experience fatigue at any given time. Similarly, the 
time multiplier standardized the cumulative summa
tion of prior fatigue states of individual muscles at 
each time period. In addition, the MMFM formula
tion accounted fast-to-slow twitch fiber ratio to 

prioritize muscles that are fast-fatiguing and more 
vulnerable to injury.

Though the MMFM was observed to be sensitive 
to fatigue-related neuromuscular changes, there are a 
few study limitations that need to be acknowledged. 
First, the MMFM was validated for a limited number 
of static and dynamic exertion tasks, which were per
formed in standard neutral standing posture with a 
fixed speed and duration. The tasks in occupational 
settings are not always performed under such condi
tions. Secondly, the participant pool was limited to 
university-aged students with little to no manual 
materials handling experience. Experienced workers 
may exhibit different material handling and muscle 
recruitment strategies. Third, only male participants 
were recruited. However, the manifestation of fatigue 
in female participants may follow a different pattern. 
Fourth, our MMFM formulation did not explicitly 
consider muscle co-contraction dynamics and muscle 
physiological cross-sectional area, which could have 
provided a slightly different fatigue assessment, par
ticularly during dynamic exertion tasks. Given that 
our goal was to formulate a multi-muscle fatigue 
model based on EMG signal patterns and muscle ana
tomical characterization and validate the model for 
various operational tasks, the experimental tasks and 
participant pool included in this study may be 
adequate. Nonetheless, future studies should assess 
the model with a wide range of participant pools and 
various operational tasks. Fifth, the MMF model was 
validated by calculating the amplitude using the MAV 
method. Other EMG processing methods, such as 
Root Mean Square (RMS), Average Rectified Value 
(ARV), and Variance of EMG (VAR) could poten
tially lead to slight variations in M1 or M2 estima
tions. Therefore, evaluating the sensitivity of the 
MMF model to different EMG processing methods 
could further validate the model’s sensitivity and ver
satility. Lastly, the biological process of central and 
peripheral fatigue can occur simultaneously. However, 
our model considers muscle states–peripheral fatigue 
central fatigue, or no-fatigue (increase in force and 
muscle resting)—as discrete events since EMG-based 
fatigue measure depends on the amplitude and fre
quency of a signal at a given discrete time step.

In conclusion, the present study established a 
fatigue model that can be useful to assess and moni
tor both physical (muscle) and central fatigue levels 
of multiple muscles simultaneously, as well as their 
combined fatigue level for various operational tasks. 
This model provides a systematic method for practi
tioners to evaluate fatigue dynamics in real time, 
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allowing for data-driven decision-making. Potential 
applications include real-time algorithm detection of 
fatigue type (M1 or M2). Workers with dominant M1 
fatigue (physical exhaustion) might benefit from exo
skeletons or task redesigns, while those with M2 
fatigue (peripheral) could receive workload pacing 
and load reduction. Thus, the model is believed to 
help practitioners determine mitigation strategies to 
reduce the risk of MSDs in the operational 
environment.
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